SELF-REFINE: [terative
Refinement with Self-
Feedback

Aman Madaan, Niket Tandon, Prakhar Gupta,
Skyler Hallinan , Luyu Gao, Sarah Wiegreffe , Uri
Alon, Nouha Dziri , Shrimai Prabhumoye,
Yiming Yang , Shashank Gupta , Bodhisattwa
Prasad Majumder , Katherine Hermann , Sean
Welleck , Amir Yazdanbakhsh , Peter Clark

Motivation

Can LLMs generate better responses at test time?

Enhancing responses using the same base model has not been explored

Aim to show that using self-refinement can lead to better performance across
various domains

Explore the effect of multiple iterations of self-refinement

Contributions

Propose a novel self-refinement method to improve zero-shot
responses at inference

Introduce a framework for feedback generation and refinement

Benchmark the performance of self-refinement against the zero-
shot performance with multiple iterations

L~ O\

Feedback Refine

N, —" ~—,

Use M to get feedback on its own output Use M to refine its previous output, given its feedback

Figure 1: Given an input ((0)), SELF-REFINE starts by generating an output and passing it back to the
same model M to get feedback (D). The feedback is passed back to M, which refines the previously

generated output (2)). Steps (D) and () iterate until a stopping condition is met. SELF-REFINE is
instantiated with a language model such as GPT-3.5 and does not involve human assistance.

Example Transformation

(a) Dialogue: z, y¢

(b) FEEDBACK fb

(C) REFINE Y11

User: I am interested
in playing Table
tennis.

Response: I'm sure
it's a great way to
socialize, stay active

Engaging: Provides no
information about table
tennis or how to play it.

User understanding: Lacks
understanding of user's
needs and state of mind.

Response (refined): That's
great to hear (...) ! It's
a fun sport requiring
quick reflexes and good
hand-eye coordination.
Have you played before, or
are you looking to learn?

(d) Code optimization: z, y

(e) FEEDBACK fb

Generate sum of 1, ...,
def sum(n):
res = 0
for i in range(n+1):
res += i

return res

N

This code is slow as
it uses brute force.
A better approach is
to use the formula

(n(n+1))/2.

(f) REFINE yt11

Code (refined)

def sum_faster(n):
return (nx(n+1))//2

Method

Algorithm 1 SELF-REFINE algorithm

Require: input z, model M, prompts {Pgen, Ptv; Prefine }» Stop condition stop(-)

1: yo = M(pgen||T) > Initial generation (Eqn. 1)
2: for iterationt € 0,1,... do

3 for = M (pel|z||ye) > Feedback (Eqn. 2)
4 if stop(fb¢,t) then > Stop condition
5: break

6 else

7 gen = M (emellallyoll fooll- el 50 > Refine (Eqn. 4)
8: end if

9: end for

10: return y;

Figure 3: The SELF-REFINE algorithm. See (§2) for a discussion of each component.

Dataset

e Sentiment Reversal : Rewrite reviews to reverse sentiment (1000 review
passages)

* Dialogue Response Generation : Produce high-quality conversational
responses (372 conversations)

* Acronym Generation : Generate acronyms for a given title (250)
e Code Optimization : Enhance Python code efficiency (1000 programs)

e Code Readability Improvement : Refactor Python code for readability (300
programs)

 Math Reasoning : Solve math reasoning problems (1319 questions)

* Constrained Generation : Generate sentences with keywords (sampled
random key words)

Evaluation Metrics

* Task-Specific Metrics: Utilize automated metrics from previous research for
specific tasks, such as Math Reasoning (solve rate percentage) and Code
Optimization (percentage of programs optimized).

 Human-Pref Evaluation: For tasks without automated metrics like Dialogue
Response Generation and Sentiment Reversal, conduct blind human A/B
evaluations on subsets of outputs to determine preference

* GPT-4 as a Proxy for Human Preference: Leverage GPT-4 to approximate human
preferences, showing high correlation in Sentiment Reversal (82%), Acronym
Generation (68%), and Dialogue Response Generation (71%).

e Code Readability Improvement: For evaluating code readability, use GPT-4 to
assess the appropriateness of variable names within context, improving code
comprehension and maintenance.

GPT-3.5 ChatGPT GPT-4
Task Base +SELF-REFINE Base +SELF-REFINE Base +SELF-REFINE
Sentiment Reversal 8.8 30.4 (121.6) 11.4 43.2 (131.8) 3.8 36.2 (132.4)
Dialogue Response 36.4 63.6 (127.2) 40.1 59.9 (119.8) 25.4 74.6 (149.2)
Code Optimization 14.8 23.0 (18.2) 23.9 27.5 (13.6) 27.3 36.0 (18.7)
Code Readability 37.4 51.3(T13.9) 27.7 63.1(135.4) 27.4 56.2 (128.8)
Math Reasoning 64.1 64.1 (0) 74.8 75.0 (170.2) 92.9 93.1 (10.2)
Acronym Generation 41.6 56.4 (114.8) 27.2 37.2 (110.0) 304 56.0 (125.6)
Constrained Generation 28.0 37.0 (19.0) 44,0 67.0 (123.0) 15.0 45.0 (130.0)

Table 1: SELF-REFINE results on various tasks using GPT-3.5, ChatGPT, and GPT-4 as base LLM.
SELF-REFINE consistently improves LLLM. Metrics used for these tasks are defined in Section 3.2.

Feedback Analysis

Task SELF-REFINE feedback Generic feedback No feedback
Code Optimization 27.5 26.0 24.8
Sentiment Reversal 43.2 31.2 0
Acronym Generation 56.4 54.0 48.0

Table 2: Prompting to generate generic feedback (or having the model generate no feedback at
all) leads to reduced scores, indicating the importance of the FEEDBACK step of SELF-REFINE.
These experiments were performed with ChatGPT (Code Optimization and Sentiment Reversal) and
GPT-3.5 (Acronym Generation), and metrics used are defined in Section 3.2.

* Specific, actionable feedback yields superior results compared to generic or no feedback
* Even generic feedback offers some guidance, but targeted, constructive feedback achieves the best

outcomes
* The quality of feedback plays a crucial role in enhancing the performance of SELF-REFINE tasks

Effect of Multiple Iterations

11.3 loc. opt.
10 | 0C. Gen.
Task vo vy ¥ ¥ 6:4 00 S. Rev.
Code Opt. 20 210 279 288 5L2_ ‘
Sentiment Rev. 339 349 1361 36.8 { 3
Constrained Gen. 29.0 403 46.7 49.7 1 0.9 12 0.9 0.7
. | . . . ol — — |

A(yo—y1) A(y1—=y2) A(y2—y3)

Analysis

* Almost no improvement on Math Reasoning due to inability of the
model to identify errors

* Self-refine tends to work better on bigger models as shown by GPT-4
having higher improvement compared to GPT-3.5

Effect of Planning Annotations

* Model fine-tuned on D,;4n,ing Using plans from D, .4, ONly show
minor improvement

* Generated plans are imprecise or incorrect demonstrating planning as
a bottleneck

* Fine-Tuned Model showed increased performance when ground truth
plans (D®T) were generated from the test set and not D,,qu/ar

* The Fine-Tuned model was not capable of synthesizing new plans but
followed generated plans correctly

Drawbacks and limitations

* Dependence on LLMs as an oracle for functional equivalence post
transformation

* Generating natural language plans had a lot of inconsistencies and remains
a bottleneck

* The three-step transformation process introduces significant o
computational overhead, making the approach less scalable or efficient for
large datasets

* Training code generators exclusively on cleaned and modularized datasets
might lead to models that perform well on similarly structured code but
struggle with more diverse or less structured datasets

* Enhancing planning in code generation through pla.nning annotations saw
limited improvements due to the inherent complexity ot algorithmic
reasoning

	Slide 1: SELF-REFINE: Iterative Refinement with Self-Feedback
	Slide 2: Motivation
	Slide 3: Contributions
	Slide 4
	Slide 5: Example Transformation
	Slide 6: Method
	Slide 7: Dataset
	Slide 8: Evaluation Metrics
	Slide 9: Results
	Slide 10: Feedback Analysis
	Slide 11: Effect of Multiple Iterations
	Slide 12: Analysis
	Slide 13: Effect of Planning Annotations
	Slide 14: Drawbacks and limitations
	Slide 15: Q & A

