SELF-REFINE: Iterative Refinement with Self-Feedback

Aman Madaan , Niket Tandon , Prakhar Gupta , Skyler Hallinan , Luyu Gao , Sarah Wiegreffe , Uri Alon , Nouha Dziri , Shrimai Prabhumoye , Yiming Yang , Shashank Gupta , Bodhisattwa Prasad Majumder , Katherine Hermann , Sean Welleck , Amir Yazdanbakhsh , Peter Clark

Motivation

Can LLMs generate better responses at test time?

Enhancing responses using the same base model has not been explored

Aim to show that using self-refinement can lead to better performance across various domains

Explore the effect of multiple iterations of self-refinement

Contributions

Propose a novel self-refinement method to improve zero-shot responses at inference

Introduce a framework for feedback generation and refinement

Benchmark the performance of self-refinement against the zeroshot performance with multiple iterations

Figure 1: Given an input (((0)), SELF-REFINE starts by generating an output and passing it back to the same model \mathcal{M} to get feedback (((1)). The feedback is passed back to \mathcal{M} , which refines the previously generated output ((2)). Steps ((1)) and ((2)) iterate until a stopping condition is met. SELF-REFINE is instantiated with a language model such as GPT-3.5 and does not involve human assistance.

Example Transformation

(a) Dialogue: x , y_t	(b) FEEDBACK fb	(c) REFINE y_{t+1}		
User: I am interested in playing Table tennis.	Engaging: Provides no information about table tennis or how to play it.	Response (refined): That's great to hear () ! It's a fun sport requiring quick reflexes and good		
Response: I'm sure it's a great way to socialize, stay active	User understanding: Lacks understanding of user's needs and state of mind.	hand-eye coordination. Have you played before, or are you looking to learn?		

(d) Code optimization: x, y_t

(e) FEEDBACK fb

(f) REFINE y_{t+1}

Generate sum of 1, ..., N
def sum(n):
 res = 0
 for i in range(n+1):
 res += i
 return res

This code is slow as it uses brute force. A better approach is to use the formula ... (n(n+1))/2. Code (refined)

def sum_faster(n):
 return (n*(n+1))//2

Method

Algorithm 1 SELF-REFINE algorithm

Require: input x, model \mathcal{M} , prompts $\{p_{gen}, p_{fb}, p_{refine}\}$, stop condition stop (\cdot) 1: $y_0 = \mathcal{M}(p_{\text{gen}} \| x)$ \triangleright Initial generation (Eqn. 1) 2: for iteration $t \in 0, 1, \dots$ do $fb_t = \mathcal{M}\left(p_{\rm fb} \| x \| y_t\right)$ \triangleright Feedback (Eqn. 2) 3: if $stop(fb_t, t)$ then 4: \triangleright Stop condition 5: break else 6: $y_{t+1} = \mathcal{M}\left(p_{\text{refine}} \|x\| y_0 \|fb_0\| ... \|y_t\| fb_t\right)$ 7: \triangleright Refine (Eqn. 4) 8: end if 9: end for 10: return y_t

Figure 3: The SELF-REFINE algorithm. See (§2) for a discussion of each component.

Dataset

- Sentiment Reversal : Rewrite reviews to reverse sentiment (1000 review passages)
- **Dialogue Response Generation** : Produce high-quality conversational responses (372 conversations)
- Acronym Generation : Generate acronyms for a given title (250)
- Code Optimization : Enhance Python code efficiency (1000 programs)
- Code Readability Improvement : Refactor Python code for readability (300 programs)
- Math Reasoning : Solve math reasoning problems (1319 questions)
- Constrained Generation : Generate sentences with keywords (sampled random key words)

Evaluation Metrics

- Task-Specific Metrics: Utilize automated metrics from previous research for specific tasks, such as Math Reasoning (solve rate percentage) and Code Optimization (percentage of programs optimized).
- Human-Pref Evaluation: For tasks without automated metrics like Dialogue Response Generation and Sentiment Reversal, conduct blind human A/B evaluations on subsets of outputs to determine preference
- GPT-4 as a Proxy for Human Preference: Leverage GPT-4 to approximate human preferences, showing high correlation in Sentiment Reversal (82%), Acronym Generation (68%), and Dialogue Response Generation (71%).
- **Code Readability Improvement**: For evaluating code readability, use GPT-4 to assess the appropriateness of variable names within context, improving code comprehension and maintenance.

Results

		GPT-3.5		ChatGPT		GPT-4
Task	Base	+SELF-REFINE	Base	+SELF-REFINE	Base	+SELF-REFINE
Sentiment Reversal	8.8	30.4 (†21.6)	11.4	43.2 (†31.8)	3.8	36.2 (†32.4)
Dialogue Response	36.4	63.6 (†27.2)	40.1	59.9 (†19.8)	25.4	74.6 (†49.2)
Code Optimization	14.8	23.0 (†8.2)	23.9	27.5 (†3.6)	27.3	36.0 (†8.7)
Code Readability	37.4	51.3 (†13.9)	27.7	63.1 (†35.4)	27.4	56.2 (†28.8)
Math Reasoning	64.1	64.1 (0)	74.8	75.0 (†0.2)	92.9	93.1 (†0.2)
Acronym Generation	41.6	56.4 (†14.8)	27.2	37.2 (†10.0)	30.4	56.0 (†25.6)
Constrained Generation	28.0	37.0 (†9.0)	44.0	67.0 (†23.0)	15.0	45.0 (†30.0)

Table 1: SELF-REFINE results on various tasks using GPT-3.5, ChatGPT, and GPT-4 as base LLM. SELF-REFINE consistently improves LLM. Metrics used for these tasks are defined in Section 3.2.

Feedback Analysis

Task	SELF-REFINE feedback	Generic feedback	No feedback
Code Optimization	27.5	26.0	24.8
Sentiment Reversal	43.2	31.2	0
Acronym Generation	56.4	54.0	48.0

Table 2: Prompting to generate generic feedback (or having the model generate no feedback at all) leads to reduced scores, indicating the importance of the FEEDBACK step of SELF-REFINE. These experiments were performed with ChatGPT (Code Optimization and Sentiment Reversal) and GPT-3.5 (Acronym Generation), and metrics used are defined in Section 3.2.

- Specific, actionable feedback yields superior results compared to generic or no feedback
- Even generic feedback offers some guidance, but targeted, constructive feedback achieves the best outcomes
- The quality of feedback plays a crucial role in enhancing the performance of SELF-REFINE tasks

Effect of Multiple Iterations

Task	y_0	y_1	y_2	y_3
Code Opt.	22.0	27.0	27.9	28.8
Sentiment Rev.	33.9	34.9	36.1	36.8
Constrained Gen.	29.0	40.3	46.7	49.7

Analysis

- Almost no improvement on Math Reasoning due to inability of the model to identify errors
- Self-refine tends to work better on bigger models as shown by GPT-4 having higher improvement compared to GPT-3.5

Effect of Planning Annotations

- Model fine-tuned on $D_{planning}$ using plans from $D_{modular}$ only show minor improvement
- Generated plans are imprecise or incorrect demonstrating planning as a bottleneck
- Fine-Tuned Model showed increased performance when ground truth plans (D^{GT}) were generated from the test set and not D_{modular}
- The Fine-Tuned model was not capable of synthesizing new plans but followed generated plans correctly

Drawbacks and limitations

- Dependence on LLMs as an oracle for functional equivalence post transformation
- Generating natural language plans had a lot of inconsistencies and remains a bottleneck
- The three-step transformation process introduces significant computational overhead, making the approach less scalable or efficient for large datasets
- Training code generators exclusively on cleaned and modularized datasets might lead to models that perform well on similarly structured code but struggle with more diverse or less structured datasets
- Enhancing planning in code generation through planning annotations saw limited improvements due to the inherent complexity of algorithmic reasoning

